Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Cancer Res Ther ; 19(2): 366-375, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37313912

RESUMEN

Objectives: This study examines the role of tumor texture on computed tomography (CT) images as a complement to clinical prognostic factors in predicting survival in patients of non-small cell lung carcinoma (NSCLC) treated with radical chemo-radiation (CRT). Methods: A total of 93 patients with confirmed NSCLC treated with CRT accrued in a study approved by the institutional ethics committee were analyzed for CT-based radiomic features. Pretreatment CT images were used to contour the primary tumor and texture features were computed by the image filtration method to differentially highlight fine to coarse textures. Texture parameters included mean intensity, entropy, kurtosis, standard deviation, and mean positive pixel and skewness. Optimal threshold cut-off values of the above tumor texture features were analyzed. These features were explored as imaging biomarkers to predict survival using Kaplan-Meier and Cox proportional hazard model. Results: Median follow-up of the entire cohort was 23.5 months [Interquartile range, IQR: 14-37] while for alive patients, median follow-up was 31 months (IQR: 23-49), 47 (50.6%) patients had died at the last follow-up. Univariate analysis revealed certain features like age, gender, response to therapy, and texture features like mean and kurtosis in CT images to be significant predictors of survival. In multivariate analysis, age (P = 0.006), gender (P = 0.004), treatment response (P< 0.0001), and two CT texture parameters: mean (P = 0.027) and kurtosis (P= 0.002) were independent prognostic factors of survival. Interpretation and Conclusion: CT-derived tumor heterogeneity (mean and kurtosis) complements clinical factors for predicting survival in NSCLC patients treated with CRT. Tumor radiomics warrants further validation as potential prognostic biomarkers for these patients.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Carcinoma de Pulmón de Células no Pequeñas/terapia , Tomografía Computarizada por Rayos X , Quimioradioterapia , Biomarcadores , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/terapia
2.
CNS Oncol ; 11(2): CNS83, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35373582

RESUMEN

Aim: To assess systemic inflammatory biomarkers in non invasive differential diagnosis of primary central nervous system lymphoma (PCNSL) from high-grade glioma (HGG). Materials & methods: Patients with similar morphology (PCNSL or HGG) on conventional neuro-imaging were included. Systemic inflammatory indices were calculated from pretreatment complete blood counts and liver function tests and compared against histopathology as reference standard. Results: Mean values of absolute lymphocyte count and prognostic nutritional index were significantly different between PCNSL (n = 42) versus HGG (n = 16). Area under receiver operating characteristics curve for absolute lymphocyte count and prognostic nutritional index in the diagnosis of PCNSL was 0.70 and 0.72 respectively suggesting fair and acceptable diagnostic accuracy. Conclusion: Systemic inflammatory biomarkers complement established clinico-radiological features and aid in the differential diagnosis of PCNSL from HGG.


There exists a complex interplay between cancer and inflammation that can manifest as increased inflammatory biomarkers in blood. However, utility of systemic inflammatory biomarkers in the non invasive differential diagnosis of primary brain lymphoma from high-grade glioma is generally lacking. Two simple serum biomarkers, absolute lymphocyte count and prognostic nutritional index, easily derived from routine pretreatment blood tests have fair correlation and acceptable diagnostic accuracy in differentiating brain lymphoma from glioma in patients with similar morphology on MRI.


Asunto(s)
Neoplasias Encefálicas , Neoplasias del Sistema Nervioso Central , Glioma , Linfoma , Biomarcadores , Neoplasias Encefálicas/patología , Sistema Nervioso Central/patología , Neoplasias del Sistema Nervioso Central/diagnóstico por imagen , Diagnóstico Diferencial , Glioma/patología , Humanos , Linfoma/diagnóstico por imagen , Linfoma/patología , Imagen por Resonancia Magnética/métodos , Estudios Retrospectivos
3.
RSC Adv ; 11(46): 28723-28734, 2021 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-35478548

RESUMEN

The requirement for clean water has been increasing for several reasons, for instance, the fast industrialization of developing countries, climate change, environmental pollution, growth of biofuel use and the resulting growth in irrigation. To meet the requirements for contamination-free water, a cost-effective water treatment can substantially improve the developing world's health, largely for children, and there is predicted to be a huge market for this. Existing water treatment processes consist of various phases that are time-consuming as well as pricey. There is an essential demand for cost-effective point of use methods to purify drinking water to reduce the impact of diseases induced by numerous waterborne pathogens. The development of micro-devices, with different outcomes, can be a helpful solution to various problems. To make this reality, a novel microfluidic device for the purification of water, with multiple hydrodynamic effects, has been shown in this paper. In the proposed novel device, the network of interconnected microfluidic channels was created in such a way that an amalgamation of multiple effects, such as the Fåhræus effect, centrifugal force, the Zweifach-Fung effect and constriction followed by expansion, act together in the microchannel to separate suspended impurities (i.e. bacteria and similar length scale particles present in water in the suspension form) from water. Furthermore, to improve the bacterial separation efficiency of the device, the pure water channel of the microdevice was designed with an encircled triple-sided film valve arrangement at a few points, which aided the modulation of the cross-sectional area of the pure water channel. Consecutively, the reduction of the cross-sectional area of the pure water channel caused a highly effective Zweifach-Fung effect, which aided the better separation of the suspended particles (i.e. bacteria, dust particles etc.). The device was observed to have an average of 99.6% efficiency in the separation of suspended microparticles/microbes with dimensions in the range of 1-10 micrometres. The device performance indicated its potential for the separation of other similar suspended impurities, i.e. small dust particles, bacteria, fungi, viruses and similar particles present in water in the suspension form.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...